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Abstract

Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains

such as scientific computing and graph analysis. Several algorithms have been studied in the

past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-

matrix multiplication with a focus on performance portability across different high performance

computing architectures. The performance of these algorithms depend on the data structures

used in them. We compare different types of accumulators in these algorithms and demon-

strate the performance difference between these data structures. Furthermore, we develop a

meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the

characteristics of the problem. We show performance comparisons on three architectures and

demonstrate the need for the community to develop two phase sparse matrix-matrix multipli-

cation implementations for efficient reuse of the data structures involved.

1 Introduction

Modern supercomputer architectures are following various different paths, e.g., Intel’s XeonPhi pro-

cessors, NVIDIA’s Graphic Processing Units (gpus) or the Emu systems [14]. Such an environment

increases the importance of designing flexible algorithms for performance-critical kernels and im-

plementations that can run well on various platforms. We develop multi-threaded algorithms for5

sparse matrix-matrix multiply (spgemm) kernels in this work. spgemm is a fundamental kernel that

is used in various applications such as graph analytics [28] and scientific computing, especially in

the setup phase of multigrid solvers [21]. The kernel has been studied extensively in the contexts

of sequential [17], shared memory parallel [26, 18] and gpu [10, 22, 16, 8] implementations. There

are optimized kernels available on different architectures [18, 22, 8, 27, 25] providing us with good10

comparison points. In this work, we provide portable algorithms for the spgemm kernel and their

implementations using Kokkos [15] programming model with minimal changes for the architectures’

very different characteristics. For example, traditional cpus have powerful cores with large caches,
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while XeonPhi processors have many lightweight cores, and GPUs provide extensive hierarchical

parallelism with very simple computational units. The algorithms in this paper aim to minimize15

revisiting algorithmic design for these different architectures. The code divergence in the implemen-

tation and how different levels of algorithmic parallelism are mapped to computational units. is

limited to access strategies of different data structures and how different levels of parallelism in the

algorithm are mapped to computational units.

An earlier version of this paper [13] focuses on spgemm from the perspective of performance-20

portability. It addressed the issue of performance-portability for spgemm with an algorithm called

kkmem. It demonstrated better performance on gpus and the current generation of XeonPhi proces-

sors, Knights Landing (knls), w.r.t. state-of-art libraries. Our contributions in [13] is summarized

below.

• We design two thread-scalable data structures (multilevel hashmap accumulators and a mem-25

ory pool) to achieve scalability on various platforms, and a graph compression technique to

speedup the symbolic factorization of spgemm.

• We design hierarchical, thread-scalable spgemm algorithms and implement them using the

Kokkos programming model. Our implementation is available at

https://github.com/kokkos/kokkos-kernels and also in the Trilinos framework30

(https://github.com/trilinos/Trilinos).

• We also present results for the practical case of matrix structure reuse, and demonstrate its

importance for application performance.

This paper extends [13] with several new algorithm design choices and additional data structures.

Its contributions are summarized below.35

• We present results for the selection of kernel parameters e.g., partitioning scheme and data

structures with trade-offs for memory access vs. computational overhead cost, and provide

heuristics to choose the best parameters depending on the problem characteristics.

• We extend the evaluation of the performance of our methods on various platforms, including

traditional cpus, knls, and gpus. We show that our method achieves better performance than40

native methods on IBM Power8 cpus, and knls. It outperforms two other native methods on

gpus, and achieves similar performance to a third highly-optimized implementation.

The rest of the paper is organized as follows: Section 2 covers the background for spgemm. Our

spgemm algorithm and related data structures are described in Section 3. Finally, the performance

comparisons that demonstrate the efficiency of our approach is given in Section 4.45
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2 Background

Given matrices A of size m × n and B of size n × k spgemm finds the m × k matrix C s. t.

C = A × B. Multigrid solvers use triple products in their setup phase, which are of the form

Acoarse = R×Afine × P (R = PT if Afine is symmetric), to coarsen the matrices. spgemm is also

widely used for various graph analytic problems [28].50

Algorithm 1 spgemm for C = A×B. C(i, :) (C(:, i)) refer to ith row (column) of C.

Require: Matrices A, B
1: for i← 0 to m− 1 do
2: for j ∈ A(i, :) do
3: //accumulate partial row results
4: C(i, :)← C(i, :) +A(i, j)×B(j, :)

Most parallel spgemm methods follow Gustavson’s algorithm [17] (Algorithm 1). This algorithm

iterates over rows of A (line 1) to compute all entries in the corresponding row of C. Each iteration

of the second loop (line 2) accumulates the intermediate values of multiple columns within the row

using an accumulator. The number of multiplications needed to perform this matrix multiplication

is called fm (there are fm additions too) for the rest of the paper.55

Design Choices: There are three design choices that can be made in Algorithm 1: (a) the par-

titioning needed for the iterations, (b) how to determine the size of C as it is not known ahead of

time, and (c) the different data structures for the accumulators. The key differences in past work

are related to these three choices in addition to the parallel programming model.

First design choice is how to distribute the computation over execution units. A 1D partitioning60

method [1] partitions C along a single dimension, and each row is computed by a single execu-

tion unit. On the other hand, 2D [26, 6] and 3D [4] methods assign each nonzero of C or each

multiplication to a single execution unit, respectively. Hypergraph partitioning methods have also

been used to improve the data locality in 1D [2, 3] and 3D [5] methods. 1D row-wise is the most

popular choice for scientific computing applications. Using partitioning schemes for spgemm that65

differ from the application’s scheme requires reordering and maintaining a copy of one or both of

the input matrices. For gpus, hierarchical algorithms are also employed, where rows are assigned

to a first level of parallelism (blocks or warps), and the calculations within the rows are done using

a second level of parallelism [10, 27, 22, 8]. In this work, we use such a hierarchical partitioning of

the computation, where the first level will do 1D partitioning and the second level will exploit further70

thread/vector parallelism.

The second design choice is how to determine the size of C. Finding the structure of C is usually

as expensive as finding C. There exists some work to estimate its structure [7]. However, it does

not provide a robust upper bound and it is not significantly cheaper than calculating the exact size

in practice. As a result, both one-phase and two-phase methods are commonly used. One-phase75

methods rely either on finding an upper bound for the size of C [20] or doing dynamic reallocations
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when needed. The former could result in over-allocation and the latter is not feasible for gpus.

Two-phase methods first compute the structure of C (symbolic phase), before computing its values

in the second phase (numeric phase). They allow reusing the structure C for different multiplies

with the same structure of A and B [25, 10]. This is an important use case in scientific computing,80

where matrix structures stay constant while matrix values change frequently [13]. The two-phase

method also provides significant advantages in graph analytics. Most of them work only on the

symbolic structure, skipping the numeric phase [28]. In this work, we use a two-phase approach, and

speed the symbolic phase up using matrix compression.

The third design choice is the data structure to use for the accumulators. Some algorithms use a85

dense data structure of size k. The intermediate results for a row are stored in an array of size k in

its “dense” format. These dense thread-private arrays may not be scalable for massive amounts of

threads and large k values. Therefore, sparse accumulators such as heaps or hashmaps are preferred.

In this work, we use both multi-level hashmaps as sparse accumulators and dense accumulators to

achieve scalability in spgemm.90

Related Work: There are a number of distributed-memory algorithms for spgemm [6, 2, 5, 4, 1].

Most of the multithreaded spgemm studies [26, 4, 27, 16, 18] follow Gustavson’s algorithm, and

differ in the data structure used for row accumulation. Some use dense accumulators [26], others a

heap with an assumption of sorted columns in B rows [4], or sorted row merges [27, 16].

Most of the spgemm algorithms for gpus are hierarchical. CUSP [8] uses a hierarchical algorithm95

where each multiplication is computed by a single thread and later accumulated with a sort operation.

AmgX [10] follows a hierarchical Gustavson algorithm. Each row is calculated by a single warp, and

multiplications within a row are done by different threads of the warp. It uses 2-level cuckoo-hash

accumulators, and does not make any assumption on the order of the column indices. On the other

hand, the row merge algorithm [16] and its implementation in ViennaCL [27] uses merge sorts for100

accumulations of the sorted rows. bhSPARSE [22] also exploits this assumption on gpus. It chooses

different accumulators based on the size of the row. A recent work Nsparse [24] also employs a

hierarchical method and uses linear probing for accumulations. It places rows into bins based on

the required number of multiplications and the output row size, and launches different concurrent

kernels for each bin. Different from most of the spgemm work, McCourt et. al [23] computes a105

distance-2 graph coloring on the structure of C in order to reduce spgemm to spmm.

Kokkos: Kokkos [15] is a C++ library providing an abstract data and task parallel programming

model, which enables performance portability for various architectures. It provides a single program-

ming interface but allows different optimizations for backends such as OpenMP and cuda. Using

Kokkos enables us to run the same code on the cpus, knls and gpus just compiled differently.110

The kokkos-parallel hierarchy consists of teams, threads and vector lanes. A team in Kokkos

handles a workset assigned to a group of threads sharing resources. On gpus, it is mapped to a

thread block, which has access to a software managed L1 cache. A team on cpus (or knls) is a

collection of threads sharing some common resources. Depending on the granularity of the work
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units, a team is commonly chosen as the group of hyperthreads that share an L2/L1 cache or even115

just a single hyperthread. In this work, we use a team size of one (a single hyperthread) on cpus.

On gpus, a typical team size is between 4 and 64. There is no one-to-one mapping from teams to

the number of execution units. That is, the number of teams, even on cpus, can be much higher

than the number of execution units. It is therefore useful to think of teams as a logical concept,

with a one-to-one mapping to work items. A kokkos-thread within a team maps to a warp or warp120

fraction (half, quarter, etc.) on gpus and to a single thread on cpus. A kokkos-thread uses multiple

vector lanes, which map to cuda-threads within a warp in gpus and the vectorization units on cpus.

The length of the vector lanes, vector length, is a runtime parameter on gpus and can be at most

the length of a warp, while on cpus it is fixed depending on the architecture. We use the terms

teams, threads (for kokkos-threads) and vector lanes in the rest of the paper.125

The portability provided by Kokkos comes with some overhead. For example, heavily used template

meta-programming causes some compilers to fail to perform certain optimizations. Portable data

structures have also small overheads. While Kokkos allows us to write portable kernels, complex

ones as spgemm can benefit from some code divergence for better performance. For example, our

implementations favor atomic operations on gpus, and reductions on cpus.130

3 Algorithms

Algorithm 2 Overall structure of SpGEMM Methods.

Require: Input matrices A, B s.t. C = A×B
1: allocate Crow pointers

2: Bc ← compress matrix(B)
3: Crow pointers ← core spgemm (‘symbolic′, A,Bc) //symbolic phase
4: allocate Ccolumns, Cvalues

5: C ← core spgemm (‘numeric′, A,B,Crow pointers) //numeric phase

The overall structure of our spgemm methods is given in Algorithm 2. It consists of a two-phase

approach, in which the first (symbolic) phase computes the number of nonzeros in each row (line

3) of C, and the second (numeric) phase (line 5) computes C. Both phases use the core spgemm

kernel with small changes. The main difference of the two phases is that the symbolic phase does not135

use the matrix values, and thus performs no floating point operations. We aim to improve memory

and runtime of the symbolic phase by compressing B.

3.1 Core spgemm Kernel

The core spgemm kernel used by the symbolic and the numeric phase uses a hierarchical, row-wise

algorithm (3) with two thread-scalable data structures: a memory pool and an accumulator. A team140

of threads, which depending on the architecture may be a single thread or many, is assigned a set of

rows over which it loops. For each row i of A within the assigned rows, we traverse the nonzeroes
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Figure 1: Thread hierarchy used in Figure 2 and Figure 3. Two teams have two threads with two
vector lanes each.

A(i, j) of A(i, :) (Line 4). Column/Value pairs of the corresponding row of B(j, :) are multiplied and

inserted (either as a new value or accumulated to an existing one) into a small-sized level-1 (L1)

accumulator. L1 is located in fast memory and allocated using team resources (e.g., shared memory145

on gpus). If L1 runs out of space, the partial results are inserted into a level-2 (L2) accumulator

located in global memory.

Algorithm 3 core spgemm Kernel for C = A × B. Based on the phase (symbolic/numeric), B is
either a compressed or standard matrix. Either Crow pointers or C is filled.

Require: Phase, Matrices A, B, C.
1: allocate the first level accumulator L1

2: TeamRows← getTeamRows(thread team)
3: for i ∈ TeamRows do
4: for j ∈ A(i, :) do
5: for col, val ∈ B(j, :) do
6: tmpval← val ×A(i, j))
7: if Full =L1.insert(col, tmpval) then
8: if L2 is not allocated then
9: allocate the second level accumulator L2

10: L2.insert(col, tmpval)
11: if Phase is Symbolic then Crow pointers(i)← total L1/L2 Acc sizes
12: else if Phase is Numeric then C(i, :)← values from L1/L2 Acc
13: reset L1, release L2 if allocated.

First, we focus on partitioning the computation using hierarchical parallelism. The first level

parallelism is trivially achieved by assigning disjoint sets of rows of C to teams (Line 2). Further

parallelization can be achieved on the three loops highlighted with red, blue and green (Lines 3, 4150

and 5). Each of these loops can either be executed sequentially by the whole processing unit (team),

or be executed in parallel by partitioning over threads of the teams.

3.1.1 spgemm Partitioning Schemes

Figure 2 and 3 give examples of different partitioning schemes. Figure 1 shows our Kokkos-thread

hierarchy used in this example.155

Thread-Sequential: As shown in Figure 2a, this partitioning scheme assigns a group of rows to

different teams, e.g. team-1 gets the first two rows. Each thread within the team works on a different

row (Line-3 of Algorithm 3 is executed in parallel by threads). Threads traverse the nonzeroes
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(a) Thread-Sequential: Thread-1 is assigned to a single row of A. It sequentially traverses the
corresponding rows of B, one and six. It exploits vector parallelism for rows of B.

(b) Team-Sequential:Team-1 is assigned to a single row of A. It sequentially traverses the correspond-
ing rows of B, one and six. It exploits both thread and vector parallelism for rows of B.

Figure 2: Partitioning schemes for spgemm using Kokkos-thread hierarchy. Nonzeroes and zeroes
are shown in red and white, respectively. Other colors represent the mapping of the data to execution
units given in Figure 1.

(A(i, j)) of their assigned row A(i, :), and the corresponding rows B(j, :) sequentially (Line-4). The

nonzeroes of B(j, :) are traversed, multiplied and inserted into accumulators using vector parallelism160

(Line-5). A single thread computes the result for a single row of C using vectorlanes. Our previous

work, kkmem [13], and AmgX follow this partitioning scheme. Team resources (e.g., shared memory

used for L1 accumulators in gpus) are disjointly shared by the threads. This might cause more

frequent use of L2 accumulators (located in slower memory space) for larger rows. The partitioning

scheme, on the other hand, allows atomic-free accumulations. All computational units work on a165

single row of B at a time, which guarantees unique value insertions to the accumulators.

Team-Sequential: In Figure 2b, team-1 and team-2 are assigned the first and second row, re-

spectively. Different from Thread-Sequential, a whole team works on a single row of A (Line-3

sequential). Then, the whole team also sequentially traverses the nonzeroes (A(i, j)) of A(i, :) (Line-

4). Finally, the nonzeroes in row B(j, :) are traversed, multiplied and inserted into accumulators170
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(a) Thread-Parallel: Team-1 is assigned to a single row of A. Thread-1 and Thread-2 work on first
and sixth rows of B in parallel. They further exploit vector parallelism for rows of B.

(b) Thread-Flat-Parallel: Team-1 is assigned to single row of A. The multiplications are flattened as
shown in the bottom, and both thread and vector parallelism are exploited in this single dimension.
Thread-1 and thread-2 work on different portions of the sixth row of B

Figure 3: Partitioning schemes for spgemm using Kokkos-thread hierarchy.

using both thread and vector parallelism (Line-5). This approach can use all of a team’s resources

when computing the result of a single row. This allows L1 to be larger, and thus reduces the number

of L2 accesses. It also guarantees unique value insertions. However, execution units are likely to be

underutilized when the average row size of B is small. Unless we have a very dense multiplication,

our preliminary experiments show that this method does not have advantages over other methods.175

As a result, we do not use this method in our comparisons.

Thread-Parallel: Figure 3a gives an example of this scheme. This scheme assigns a whole team

to a single row of A (sequential Line-3). The method parallelizes both of the loops at Line-4 and

Line-5. Threads are assigned to different nonzeroes of (A(i, j)) of row A(i, :), and the corresponding

row B(j, :). Nonzeroes in B(j, :) are traversed, multipled and inserted into accumulators using vector180

parallelism (Line-5). As in Team-Sequential, more team resources are available for L1. The chance

of underutilization is lower than in the previous method, but it can still happen when rows require
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a very small number of multiplications. In addition, threads may suffer from load imbalance, when

rows of B differ in sizes. This scheme does not guarantee unique insertions to accumulators, as

different rows of B are handled in parallel. This method is used in Nsparse [24] and Kunchum et185

al. [19].

Thread-Flat-Parallel: We use a Thread-Flat-Parallel scheme (Figure 3b) to overcome the lim-

itations of the previous methods. This has also been explored in [8] and [19]. In this scheme, a

row of A is assigned to a team, but as opposed to the Thread-Parallel scheme, this method flattens

the second and third loop (Line-4 and Line-5). The single loop iterates over the total number of190

multiplications required for the row, which is parallelized using both vector and thread parallelism.

Each vector unit calculates the index entries of A and B to work on, and inserts its multiplication

result into the accumulators. This achieves a load-balanced distribution of the multiplications to

execution units. For example, both B(1, :) and B(6, :) are used for the multiplication of A(1, :) in

Figure 3b. Vectorlanes are assigned uniformly to the 8 multiplications. In this scheme, a row of B195

can be processed by multiple threads, and a single thread can work accross multiple rows. Regardless

of the differing row sizes in B, this method achieves perfect load-balancing at the cost of performing

index calculations for both A and B. The approach also provides larger shared memory for L1 than

Thread-Sequential. It may underutilize compute units only when rows require a very small number

of total multiplications. Parallel processing of the rows of B does not guarantee unique insertions200

to accumulators.

In this work, we use the Thread-Sequential and the Thread-Flat-Parallel scheme on gpus. These

schemes behave similarly when teams have a single thread, our choice for cpus and knls. However,

Thread-Flat-Parallel incurs index calculation overhead, which is not amortized when there is not

enough parallelism within a team. Thus, Thread-Sequential is used on cpus and knls.205

3.1.2 Accumulators and Memory Pool Data Structures

Our main methods use two-level, sparse hashmap-based accumulators. Accumulators are used to

compute the row size of C in the symbolic phase, and the column indices and their values of C in

the numeric phase. Once teams/threads are created, they allocate some scratch memory (Line 1) for

their private level-1 (L1) accumulator (not to be confused with the L1 cache). This scratch memory210

maps to the gpu shared memory in gpus and the default memory (i.e., ddr4 or high bandwidth

memory) on knls. If the L1 accumulator runs out of space, global memory is allocated (Line 9)

in a scalable way using memory pools (explained below) for a row private L2 accumulator. Its size

is chosen to guarantee that it can hold all insertions. Upon the completion of a row computation,

any allocated L2 accumulator is explicitly released. Scratch spaces used by L1 accumulators are215

automatically released by Kokkos when the threads retire.

We implemented three different types of accumulators. Two of these are sparse hashmap based

accumulators, while the third one is a dense accumulator.

Linked List based HashMap Accumulator (LL): Accumulators are either thread or team

9



private based on the partitioning scheme, so they need to be highly scalable in terms of memory.220

The hashmap accumulator here extends the hashmap used in [12] for parallel insertions. It consists

of 4 parallel arrays. Figure 4b shows an example of a hashmap that has a capacity of 8 hash entries

and 5 (key, value) pairs. The hashmap is implemented as a linked list structure. Ids and V alues

store the (key, value) pairs. Begins holds the beginning indices of the linked lists corresponding

to the hash values, and Nexts holds the indices of the next elements within the linked list. For225

example, the set of keys that have a hash value of 4 are stored with a linked list. The first index of

this linked list is stored at Begins[4]. We use this index to retrieve the (key, value) pairs (Ids[0],

V alues[0]). The linked list is traversed using the Nexts array. An index value −1 corresponds to

the end of the linked list for the hash value. We choose the size of Begins to be a power of 2,

therefore hash values can be calculated using BitwiseAnd, instead of slow modulo (%) operation.230

Each vector lane calculates the hash values, and traverses the corresponding linked list. If a key

already exists in the hashmap, values are accumulated.The implementation assumes that no values

with the same keys are inserted concurrently. If the key does not exist in the hashmap, vector

lanes reserve the next available slot with an atomic counter, and insert it to the beginning of the

linked list (atomic compare and swap) of the corresponding hash. If it runs out out memory, it235

returns “FULL” and the failed insertions are accumulated in L2. Because of its linked list structure,

its performance is not affected by the occupancy of the hashmap. Even when it is full, extra

comparisons are performed only for hash collisions. This provides constant complexity not only for

L1 but also for L2 insertions, which are performed only when L1 is full. This method assumes that

concurrent insertions are duplicate-free and avoids atomic operations for accumulations, which holds240

for Thread-Sequential and Team-Sequential. When this assumption does not hold (Thread-Parallel

and Thread-Flat-Parallel), a more complex implementation with reduced performance is necessary.

Linear Probing HashMap Accumulator (LP): Linear probing is a common technique that is

used for hashing in the literature. Nsparse applies this method for spgemm. Figure 4c gives the

example of a hashmap using LP. The data structure consists of two parallel arrays (Ids, V alues).245

Initially each hash entry is set to −1 to indicate that it is empty. Given an (id, value) pair, LP

calculates a hash value and attempts to insert the pair into the hash location. If the slot is taken,

it performs a linear scan starting at the hash location and inserts it to the first available space. For

example, in Figure 4c hash for 28 is calculated as 4, but as the slot is taken it is inserted to the next

available space. The implementation is straightforward and LP can easily be used with any of the250

4 partitioning schemes. However, as the occupancy of the hashmap becomes close to full, the hash

lookups become very expensive. This makes it difficult to use LP in a two-level hashing approach.

Each insertion to L2 would first perform a full scan of L1, resulting in a complexity of O(‖L1‖).
Nsparse uses single-level LP, and when rows do not fit into gpus shared memory, this accumulator

is directly allocated in global memory. In order to overcome this, we introduce a max occupancy255

parameter. If the occupancy of L1 is larger than this cut-off, we do not insert any new Ids to L1

and use L2 for failed insertions. We observe significant slowdowns with LP once occupancy is higher

10



than 50%, which is used as a max occupancy ratio.

Dense Accumulators: This approach accumulates rows in their dense format, requiring space

O(k) per thread/team. A dense structure allows columns to be accessed simply using their indices.260

This removes some overheads such as hash calculation and collisions. Its implementation usually

requires 2 parallel arrays. The first is used for floating point values (initialized with 0s). A second

boolean array acts as a marker array to check if a column index was inserted previously. The column

array of C is used to hold the indices that are inserted in the dense accumulator (requires an extra

array in the symbolic phase). This is a single-level accumulator, and because of its high memory265

requirements dense accumulators are not suitable for gpus. The approach is used by Patwary et

al. [26] with a column-wise partitioning of B to reduce this memory overhead.

Memory Pool: Algorithm 3 requires a portable, thread-scalable memory pool to allocate memory

for L2 “sparse” accumulators, in case a row of C cannot fit into the L1 accumulator. The memory

pool is allocated and initialized before the kernel call and services requests to allocate and release270

memory from thousands of threads/teams. As a result, allocate and release have to be thread

scalable. Its allocate function returns a chunk of memory to a requestor thread and locks it. This

lock is released as soon as the thread releases the chunk back to the pool. The memory pool reserves

numChunks memory chunks, where each has a fixed size (chunkSize). chunkSize is chosen based

on the “maximum row size in C” (maxrs) to guarantee enough space for the work in any row of275

C. maxrs is not known before performing the symbolic phase so it uses an upper bound. The

upper bound is the maximum number of multiplies (maxrf) required by any row. That number

can be computed by summing the size of all rows of B that contribute to a row. The memory pool

has two operational modes: unique and non-unique mapping of chunks to threads (one2one and

many2many).280

The parameters of the memory pool are architecture specific. numChunks is chosen based on

the available concurrency in an architecture. It is an exact match to the number of threads on the

knls/cpus. On gpus, we over-estimate the concurrency to efficiently acquire memory. We check

the available memory, and reduce numChunks if the memory allocation becomes too expensive on

gpus. cpus/knls use one2one and gpus use many2many. The allocate function of the memory285

pool uses thread indices. These indices assist the look-up for a free chunk. The pool directly returns

the chunk with the given thread index when using the one2one mode. This allows cpu/knl threads

to reuse local NUMA memory regions. In the many2many mode, the pool starts a scan from the

given thread-index until an available chunk is found. If the memory pool does not immediately

have a memory chunk available to fulfill a request, the requesting computational unit spins until it290

successfully receives an allocation.

3.2 Compression

Compression is applied to B in the symbolic phase. This method, based on packing columns of

B as bits, can reduce the size of B’s graph up to 32× (the number of bits in an integer). The

11



graph structure of B encodes binary relations - existence of a nonzero in (i, j) or not. This can be295

represented using single bits. We compress the rows of B such that 32 columns of B are represented

using a single integer following the color compression idea in [11]. In this scheme, the traditional

column index array in a compressed-row matrix is represented with 2 arrays of smaller size: “column

set” (cs) and “column set index” (csi). Set bits in cs denote existing columns. That is, if the ith

bit in cs is 1, the row has a nonzero entry at the ith column. cs is used to represent more than 32300

columns. Figure 4a shows an example of the compression of a row with 10 columns. The original

symbolic phase would insert all 10 columns for this row into accumulators. Compression reduces the

row size, and only 2 are inserted into an accumulator with BitwiseOr operation on cs values. It

is more successful if the column indices in each row are packed close to each other.

In Algorithm 3, which computational units scan the rows of A and C only once. However, a305

nonzero value in B is read multiple times, and there are flops accesses to B; i.e., B(i, :) is read as

many times as the size of A(:, i). Assuming uniform structure for A with δA (average degree of A)

nonzeroes in each column, each row of B is accessed δA times. Thus, fm becomes O(δA × nnzB),

where nnzB is the number of nonzeroes in B. If a compression method with linear time complexity

(O(nnzB)), as the one above, reduces the size of B by some ratio CF , the amount of work in the310

symbolic can be reduced by O(CF × δA × nnzB).

Compression reduces the problem size, allows faster row-union operations using BitwiseOr,

and makes the symbolic phase more efficient. The reduction in row lengths of B also reduces

the calculated maxrf, the upper bound prediction for the required memory of accumulators in

the symbolic phase, further improving the robustness and scalability of the method. However,315

compression is not always successful at reducing the matrix size. For matrices in which column

indices are spread, the compression may not reduce the input size, and introduction of the extra

values (cs) may slow the symbolic phase down. For this reason, we run compression in two phases.

We first calculate the row sizes in the compressed matrix, and calculate the overall fm after the

compression. If fm is reduced more than 15%, the matrix is compressed and the symbolic phase320

is executed using this compressed matrix. Otherwise, we do not perform compression and run the

symbolic phase using the original matrices. We find this compression method to be very effective

in practice; e.g., the fm reduction is less than 15% only for 7 of 83 test cases used in this paper.

See [28] for the effect of this compression method on solving the triangle counting problem.

3.3 KokkosKernels SpGEMM Methods325

Our previous work [13] proposes the kkmem algorithm. It uses a Thread-Sequential approach with

LL accumulators. Its auto parameter detection focuses on the selection of vector-length. This size

is fixed for all threads in a parallel kernel. We set it on gpus by rounding δB (average degree

of B) to the closest power of 2 (bounded by warp size 32). On knls and cpus, Kokkos sets the

length depending on the compiler and underlying architecture specifications. The size of its L1330

accumulators depends on the available shared memory on gpus. The size of the L2 accumulator

12



(a) Compression (b) LL (c) LP

Figure 4: Compression and Hashmap examples

(in the global memory) is chosen as maxrs in the numeric (maxrf in the symbolic). In contrast to

gpus, both L1 and L2 accumulators are in the same memory space on knls/cpus. Since there are

more resources per thread on the knls/cpus, we make L1 big enough to hold maxrs (or maxrf).

This is usually small enough to fit into cache on knls/cpus.335

kkmem is designed to be scalable to run on large datasets with large thread counts. It aims to

minimize the memory use (O(maxrs)) and to localize memory accesses at the cost of increased hash

operations/collisions. In this work, we add kkdense that uses dense accumulators (O(k)) and runs

only on cpus and knls. It does not have the extra cost of hash operations. However, its memory

accesses may not be localized depending on the structure of a problem. When k is small, using340

sparse accumulators does not have much advantage over dense accumulators (on knls/cpus) as a

dense accumulator would also fit into cache. Moreover, some matrix multiplications might result in

maxrs to be very close to k (e.g. squaring RMAT matrices results in maxrs to be 95% of k). In such

cases sparse accumulators allocate as much memory as dense accumulators, while still performing

extra hash operations. Sparse accumulators are naturally not expected to perform better than dense345

accumulators for these cases.

This work proposes a meta algorithm kkspgemm that chooses either of these methods on cpus

and knls based on the size of k. We observe superior performance of kkdense for k < 250, 000

on knl’s ddr memory. As k gets larger kkmem outperforms kkdense. We introduce a cut-off

parameter for k based on this observation. The meta-algorithm runs kkdense for k < 250, 000,350

and kkmem otherwise. As the columns are compressed in the symbolic phase by a factor of 32,

kkspgemm may run kkdense for the symbolic phase, and kkmem for the numeric phase. A more

sophisticated selection of this parameter requires consideration of the underlying architecture. If

the architecture has a larger memory bandwidth, it may be more tolerant to larger dense accumula-

tors. For example, using mcdram or cache-mode in knls provides larger memory bandwidth, and355

kkdense also achieves better performance than kkmem for k > 250, 000. Yet, in the rest of the

paper we use k = 250, 000 as cut-off across different architectures, which captures the best methods

for most cases.

The parameter selection on gpus is more complicated with additional variables, i.e., shared

13



Table 1: The KokkosKernels variants used in this paper.

cpus & knls kkmem [13] kkdense: Dense Acc. kkspgemm: kkmem for k < 250, 000, kkdense otherwise.
gpus kkmem [13] kklp: 2-level LP with Thread-Flat-Parallel kkspgemm: kkmem for average row flops< 256, kklp otherwise.

Table 2: The specifications of the architectures used in the experiments. The experiments set
OMP PROC BIND=spread and OMP PLACES=threads.

Cluster - cpu/gpu Bowman - Intel KNL White (Host) - IBM Power8 White (GPU) - NVIDIA P100-SXM2
Compiler intel 18.0.128 gnu 5.4.0 gnu 5.4.0, nvcc 8.0.44
Core specs 68× 1.40GHz cores, 4 hyperthreads 16× 3.60 GHz cores, 8 hyperthreads 1.48GHz
Memory 16 GB MCDRAM 460 GB/s, 96 GB DDR4 102 GB/s 512 GB DDR4, 2 NUMA 16 GB HBM

memory, warp (vector-length) and block sizes. This work introduces kklp, which uses the Thread-360

Flat-Parallel partitioning with two-level LP accumulators. For problems in which rows require few

(on average < 256) multiplications, our meta algorithm runs kkmem; otherwise it runs kklp. Once

the algorithm is chosen, based on the average output row size (ars), we adjust the shared memory

size (initially 16KB per team) to minimize the use of L2 accumulators. For kkmem, if ars does not

fit into L1, we reduce the number of threads within teams (by increasing the vector length up to365

32 and reducing threads at the same time) to increase the shared memory per thread, so that most

of the entries can fit into L1. For kklp, if initial available shared memory for the team (16KB)

provides more space than ars, we reduce the team size and its shared memory to be able to run

more blocks concurrently on the streaming multiprocessors of gpus. If ars requires larger memory

than 16KB, we increase the shared memory at most to 32KB (and block size to 512). As the row370

sizes are unknown at the beginning of the symbolic phase, it is more challenging to select these

parameters then. We estimate ars from fm by assuming every nth (8th is used for the experiments)

multiplication will reduce to the same nonzero.

The experiments run our old method kkmem without this parameter selection to highlight the

improvements w.r.t. previous work. Table 1 summarizes the methods used in this paper. Our375

implementations cannot launch concurrent kernels using cuda-streams as Nsparse does, as Kokkos

does not support that yet. Instead, we launch a single kernel using the above parameter selection.

4 Experiments

Performance experiments are performed on three different configurations, representing two of the

most commonly HPC leadership class machine hardware designs: Intel XeonPhi and IBM Power380

with NVIDIA GPUs. The configurations of the nodes are listed in Table 2. Our methods are

implemented using the Kokkos library (2.5.00), and will be available in KokkosKernels (2.5.10).

Detailed explanation about the raw experiment results and reproducing them can be found at

https://github.com/kokkos/kokkos-kernels/wiki/SpGEMM_Benchmarks. Each run reported in

this paper is the average of 5 executions (preceded with 1 excluded warmup run) with double precision385

arithmetic and 32 bit integers. We evaluate 83 matrix multiplications, 24 of which are of the form

R× A× P as found in multigrid, while the rest are of the form A× A using matrices from the UF

14

https://github.com/kokkos/kokkos-kernels/wiki/SpGEMM_Benchmarks


1 2 4 8 16 32 64 128
# threads

0

1

2

3

4

5
G

FL
O

P
S

KKSpGEMM

KKMEM

KKDENSE

viennaCL

(a) BigStar A× P k = 1.5M
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(b) BigStar R×A k = 21.5M
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(c) europe k = 50.9M
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(d) kron16 k = 65K
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(e) coPap.Cite. k = 434K

1 2 4 8 16 32 64 128
# threads

0

1

2

3

4

5

G
FL

O
P
S

KKSpGEMM

KKMEM

KKDENSE

viennaCL

(f) flickr k = 820K

Figure 5: Strong scaling GFLOPS/sec on Power8 cpus.

sparse suite [9]. The problems are listed in Table 3.Experiments are run for both a NoReuse and a

Reuse case. Both the symbolic and the numeric phase are executed for NoReuse. Reuse executes

only the numeric phase, and reuses the previous symbolic computations. Unless specifically stated,390

the results refer to the NoReuse case.

4.1 Experiments on Power8 cpus

We compare our methods (kkspgemm, kkmem, kkdense), against ViennaCL (OpenMP) on Power8

cpus. Figure 5 gives strong scaling GFLOPS/sec for the four methods on different multiplications

with different characteristics.395

The first two multiplications (a and b) are from a multigrid problem. As k gets larger, kkdense

suffers from low spatial locality, and it is outperformed by kkmem. kkdense’s memory allocation

for its accumulators fails for some cases. Although, they should fit into memory, we suspect that

allocation of such large chunks is causing these failures. kkdense achieves better performance for

matrices with smaller k. Among them, kron not only has the smallest k, but also has a maxrs that400

is 83% of k. The sparse accumulators use a similar amount of memory as kkdense, but still acrue

the overhead for hash operations. Our meta method chooses kkdense for kron’s numeric and the
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Table 3: The list of the matrices used in the experiments in this paper. CF and CMRF gives the ratio of the
reduction in overall number of flops and maximum row flops. Last four columns list the achieved GFLOPs/sec by
kkspgemm on 4 architectures.

ID Multiplication m n k fm maxrf ‖C‖ maxrs CF CMRF Power8 P100
KNL
DDR

KNL
CACHE

1 amazon0302 262,111 262,111 262,111 6,021,131 25 3,896,236 25 0.71 1.00 1.63 1.64 0.80 0.89
2 belgium osm 1,441,295 1,441,295 1,441,295 7,017,228 25 5,323,073 18 0.65 0.80 1.36 1.13 0.60 0.66
3 mac econ fwd500 206,500 206,500 206,500 7,556,897 229 6,704,899 215 0.57 0.59 2.22 1.49 0.51 0.72
4 mc2depi 525,825 525,825 525,825 8,391,680 16 5,245,952 10 0.76 0.94 2.55 1.51 1.00 1.65
5 delaunay n18 262,144 262,144 262,144 9,907,810 214 5,430,294 154 0.47 0.62 3.25 2.18 1.07 1.38
6 2cubes sphere 101,492 101,492 101,492 27,450,606 544 8,974,526 180 0.48 0.63 5.15 5.80 1.45 2.57
7 ca-HepPh 12,008 12,008 12,008 30,793,000 93,923 3,284,660 3,211 0.73 0.03 7.59 1.48 2.36 2.35
8 rgg n 2 18 s0 262,144 262,144 262,144 39,648,378 716 9,179,295 67 0.81 0.70 5.09 6.82 2.51 3.20
9 hugetrace-00000 4,588,484 4,588,484 4,588,484 41,260,426 9 28,308,760 7 0.74 1.00 1.06 3.16 0.54 0.83

10 web-Stanford 281,903 281,903 281,903 44,110,669 13,682 20,811,442 3,421 1.00 0.64 3.60 2.12 1.69 2.13
11 Stanford 281,903 281,903 281,903 44,110,669 491,041 20,811,442 68,455 0.86 0.03 1.99 0.19 0.44 0.83
12 amazon-2008 735,323 735,323 735,323 46,082,867 100 25,366,745 100 0.38 0.93 3.88 3.65 2.03 2.67
13 web-Google 916,428 916,428 916,428 60,687,836 4,334 29,710,164 2,256 1.00 1.00 2.13 1.81 1.21 1.92
14 webbase-1M 1,000,005 1,000,005 1,000,005 69,524,195 116,179 51,111,996 12,383 0.25 0.27 4.23 1.19 1.54 1.82
15 offshore 259,789 259,789 259,789 71,342,515 562 23,356,245 182 0.61 0.68 5.22 7.29 2.75 3.97
16 conf5 4-8x8-05 49,152 49,152 49,152 74,760,192 1,521 10,911,744 222 0.21 0.26 12.34 10.78 4.42 5.45
17 delaunay n21 2,097,152 2,097,152 2,097,152 79,241,506 219 43,417,524 157 0.47 0.65 3.55 4.95 1.73 2.48
18 cop20k A 121,192 121,192 121,192 79,883,385 2,489 18,705,069 495 0.39 0.43 6.90 10.11 2.94 4.40
19 cit-Patents 3,774,768 3,774,768 3,757,431 82,152,992 6,142 68,848,721 3,925 0.99 0.99 0.89 0.90 0.54 1.07
20 filter3D 106,437 106,437 106,437 85,957,185 3,340 20,161,619 550 0.54 0.63 7.61 8.16 3.29 5.11
21 Empire RAxP 8,800 2,160,000 8,800 91,604,280 11,037 280,800 36 0.59 0.03 5.86 3.02 2.78 3.61
22 Empire RxAP 8,800 2,160,000 8,800 91,604,280 11,064 280,800 36 0.39 0.03 6.24 5.12 3.17 4.38
23 cnr-2000 325,557 325,557 325,557 96,065,788 34,537 34,174,066 15,723 0.18 0.19 7.32 2.13 3.16 5.12
24 soc-Slashdot0811 77,360 77,360 77,360 111,839,175 134,321 78,851,659 31,750 0.60 0.03 4.58 1.56 1.46 2.46
25 amazon0601 403,394 403,394 403,394 149,306,190 31,313 98,600,816 20,607 0.79 0.40 3.40 1.40 1.20 2.03
26 rma10 46,835 46,835 46,835 156,480,259 12,765 7,900,917 425 0.10 0.10 15.89 16.65 8.25 9.51
27 hugebubbles-00000 18,318,143 18,318,143 18,318,143 164,791,952 9 113,009,849 7 0.74 1.00 1.03 4.02 0.73 1.02
28 hugebubbles-00020 21,198,119 21,198,119 21,198,119 190,713,076 9 132,690,161 7 0.83 1.00 0.57 3.28 0.57 0.82
29 rgg n 2 20 s0 1,048,576 1,048,576 1,048,576 194,980,566 1,011 41,709,507 75 0.90 0.74 5.28 8.10 3.37 4.24
30 Elasticity 113 RxAP 54,872 4,328,691 54,872 205,253,787 3,993 1,404,928 27 0.47 0.43 5.25 5.75 3.13 4.47
31 Elasticity 113 RAxP 54,872 4,328,691 54,872 205,253,787 3,993 1,404,928 27 0.65 0.43 5.25 3.51 2.75 4.11
32 Stanford Berkeley 683,446 683,446 683,446 222,116,841 955,984 78,130,972 136,877 0.17 0.03 4.49 0.49 1.40 1.57
33 europe osm 50,912,018 50,912,018 50,912,018 241,277,568 44 182,570,158 28 0.64 0.80 1.32 2.82 0.87 1.17
34 cant 62,451 62,451 62,451 269,486,473 5,913 17,440,029 375 0.12 0.12 15.82 18.99 9.36 12.89
35 Brick 185 RxAP 238,328 6,331,625 238,328 307,568,462 2,220 6,436,594 78 0.47 0.71 5.37 6.79 3.02 4.21
36 Brick 185 RAxP 238,328 6,331,625 238,328 307,568,462 2,217 6,436,594 78 0.64 0.78 5.25 3.82 3.07 4.16
37 BigStar 4657 RAxP 1,446,620 21,687,649 1,446,620 369,829,182 265 24,552,796 17 0.79 0.80 2.47 4.53 1.36 2.63
38 BigStar 4657 RxAP 1,446,620 21,687,649 1,446,620 369,829,182 265 24,552,796 17 0.63 0.67 2.29 5.64 1.27 2.68
39 shipsec1 140,874 140,874 140,874 450,639,288 6,876 24,086,412 342 0.15 0.17 15.67 21.58 10.63 13.30
40 consph 83,334 83,334 83,334 463,845,030 6,561 26,539,736 375 0.15 0.24 16.10 25.88 11.03 13.72
41 cage14 1,505,785 1,505,785 1,505,785 532,205,737 1,525 236,999,813 646 0.78 0.74 4.76 4.85 2.89 4.11
42 pdb1HYS 36,417 36,417 36,417 555,322,659 32,222 19,594,581 987 0.07 0.04 18.64 24.47 12.69 15.60
43 hood 220,542 220,542 220,542 562,028,138 3,871 34,242,180 231 0.13 0.16 15.28 25.34 9.44 12.45
44 Laplace 284 RxA 2,774,624 22,906,304 22,906,304 582,550,744 350 206,478,136 114 0.72 0.73 2.13 4.58 0.87 2.05
45 Laplace 284 AxP 22,906,304 22,906,304 2,774,624 582,550,744 36 206,478,136 15 0.93 1.00 3.42 6.76 2.40 2.89
46 af shell1 504,855 504,855 504,855 613,607,875 1,375 47,560,375 105 0.11 0.15 11.53 26.17 8.55 9.78
47 pwtk 217,918 217,918 217,918 626,054,402 8,474 32,772,236 384 0.09 0.10 16.43 33.24 10.79 13.60
48 delaunay n24 16,777,216 16,777,216 16,777,216 633,914,372 280 347,322,258 218 0.47 0.69 3.57 6.72 2.23 3.11
49 Laplace 284 RxAP 2,774,624 22,906,304 2,774,624 742,456,340 422 86,570,980 49 0.83 0.91 2.34 6.19 1.05 2.11
50 Laplace 284 RAxP 2,774,624 22,906,304 2,774,624 742,456,340 404 86,570,980 49 0.93 0.97 2.84 4.76 1.02 2.11
51 Brick 185 RxA 238,328 6,331,625 6,331,625 776,170,999 5,751 78,955,509 509 0.35 0.35 6.42 7.98 4.43 6.10
52 Brick 185 AxP 6,331,625 6,331,625 238,328 776,170,999 215 78,955,509 27 0.61 0.83 6.94 11.70 4.69 5.66
53 nlpkkt80 1,062,400 1,062,400 1,062,400 790,384,704 784 154,663,144 152 0.38 0.48 7.64 12.43 6.10 7.17
54 BigStar 4657 AxP 21,687,649 21,687,649 1,446,620 845,292,479 42 131,484,200 9 0.78 0.98 4.14 9.60 2.98 3.57
55 BigStar 4657 RxA 1,446,620 21,687,649 21,687,649 845,292,479 585 131,484,200 91 0.40 0.42 3.82 7.71 2.15 4.08
56 eu-2005 862,664 862,664 862,664 849,268,919 153,454 284,177,131 16,051 0.28 0.10 5.48 5.44 2.06 2.78
57 NALU R3 RxAP 552,583 17,598,889 552,583 1,254,217,679 3,357 31,098,707 59 0.46 0.68 5.27 8.91 3.94 5.16
58 NALU R3 RAxP 552,583 17,598,889 552,583 1,254,217,679 3,219 31,098,707 59 0.67 0.77 4.75 4.78 3.40 4.56
59 Empire RxA 8,800 2,160,000 2,160,000 1,286,511,829 155,460 25,410,400 3,010 0.15 0.17 8.16 8.66 5.55 6.56
60 Empire AxP 2,160,000 2,160,000 8,800 1,286,511,829 999 25,410,400 27 0.55 0.28 8.36 8.85 6.46 7.42
61 Fault 639 638,802 638,802 638,802 1,298,780,298 15,813 126,633,024 897 0.19 0.16 11.06 17.47 8.63 10.46
62 channel-500x100x100-b050 4,802,000 4,802,000 4,802,000 1,522,677,096 324 436,529,632 93 0.52 0.74 6.31 11.41 4.77 6.00
63 wb-edu 9,845,725 9,845,725 9,845,725 1,559,579,990 281,616 630,077,764 14,427 0.21 0.12 4.25 7.07 1.31 1.40
64 Elasticity 113 AxP 4,328,691 4,328,691 54,872 1,572,091,911 375 53,338,743 27 0.61 0.74 8.31 12.86 6.39 7.55
65 Elasticity 113 RxA 54,872 4,328,691 4,328,691 1,572,091,911 30,375 53,338,743 1,029 0.14 0.14 9.43 12.64 7.23 8.93
66 in-2004 1,382,908 1,382,908 1,382,908 1,708,503,481 240,257 213,255,458 9,997 0.08 0.09 4.59 5.80 1.85 2.07
67 af shell10 1,508,065 1,508,065 1,508,065 1,840,916,875 1,225 142,742,975 95 0.11 0.16 12.10 27.42 9.99 11.49
68 cage15 5,154,859 5,154,859 5,154,859 1,885,387,372 1,904 929,023,247 859 0.83 0.79 4.57 5.72 2.78 4.33
69 dielFilterV2real 1,157,456 1,157,456 1,157,456 2,337,362,192 5,464 325,027,200 668 0.30 0.36 8.76 13.36 7.12 8.64
70 wikipedia-20051105 1,634,989 1,634,989 1,634,989 2,373,873,670 274,992 1,725,264,272 134,091 0.82 0.19 3.33 0.99 1.16
71 ldoor 952,203 952,203 952,203 2,408,881,377 4,165 145,422,935 259 0.12 0.16 12.22 24.74 10.70 12.08
72 NALU R3 RxA 552,583 17,598,889 17,598,889 2,456,399,623 6,777 243,321,996 613 0.28 0.32 6.37 8.20 4.44 6.49
73 NALU R3 AxP 17,598,889 17,598,889 552,583 2,456,399,623 183 243,321,996 22 0.67 0.90 5.38 11.50 4.37 4.93
74 Serena 1,391,349 1,391,349 1,391,349 3,111,966,351 11,556 315,805,689 1,236 0.18 0.18 11.33 17.13 10.07 11.26
75 coPapersDBLP 540,486 540,486 540,486 4,091,407,036 737,309 480,122,442 35,874 0.17 0.03 10.18 7.89 5.20 7.81
76 flickr 820,878 820,878 820,878 4,318,945,024 2,907,529 1,112,536,788 202,990 0.57 0.03 4.45 1.45 1.28 2.17
77 RM07R 381,689 381,689 381,689 5,272,142,064 60,375 193,345,783 1,475 0.15 0.15 11.81 20.33 10.08 12.15
78 Bump 2911 dig 2,911,419 2,911,419 2,911,419 5,745,156,927 9,370 560,173,611 738 0.17 0.17 11.29 19.54 10.49 11.39
79 kron g500-logn16 65,536 65,536 65,536 6,768,428,563 4,368,565 972,785,311 54,856 0.50 0.03 8.44 2.49 2.66 3.63
80 coPapersCiteseer 434,102 434,102 434,102 6,822,448,658 786,040 264,584,716 12,882 0.10 0.03 8.81 19.43 5.59 7.50
81 audikw 1 943,695 943,695 943,695 8,089,734,897 32,985 662,878,935 1,689 0.14 0.14 11.71 19.70 9.92 11.80
82 dielFilterV3real 1,102,824 1,102,824 1,102,824 8,705,461,058 26,163 688,649,400 1,671 0.23 0.26 10.47 17.04 8.60 10.83
83 HV15R 2,017,169 2,017,169 2,017,169 42,201,218,799 132,295 1,768,066,720 1,900 0.13 0.14 13.00 10.25 8.22

GEOMEAN: 0.38 0.30 5.23 5.98 2.86 3.90
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symbolic phase. It executes kkdense only for the symbolic phase of BigStar A×P , coPapersCiteseer,

and flickr, as the compression reduces their k by 32×. kkdense achieves better performance than

kkspgemm in 3 instances. These suggest that the simple architecture agnostic heuristic for choosing405

the optimal algorithm, is leaving room for improvement. The current heuristic is erring on the side

of reduced memory consumption, which in real applications may be desirable.

Figure 6a lists the performance profiles of the algorithms on Power8. For a given x, the y value

indicates the number of problem cases, for which a method is less than x times slower than the

best result achieved with any method for each individual problem. The max value of y at x = 1 is410

the number of problem cases for which a method achieved the best performance. The x value for

which y = 83 is the largest slowdown a method showed over any problem, compared with the best

observed performance for that problem over all methods. As seen in the figure, for about 50 problems

kkspgemm achieves the best performance (or at most 0.5% slower than the best KK variant). The

performance of viennaCL is mostly lower than achieved by KK variants. While our methods do not415

make any assumption on whether the input matrices have sorted columns, all test problems have

sorted columns to be able to run the different methods throughout our experiments. For example,

viennaCL requires sorted inputs, and returns sorted output. If the calling application does not store

sorted matrices, pre-processing is required to use viennaCL. Similarly, if the result of spgemm must

be sorted, post-processing is required for our methods. For iterative multiplications in multigrid,420

the output of a multiplication (AP = A×P ) becomes the input of the next one (R×AP ). As long

as methods make consistent assumptions for their input and outputs, this pre-/post-processing can

be skipped.

4.2 Experiments on knls

The experiments on knls compare our methods against two methods provided by the Intel Math425

Kernel Library (mkl) using two memory modes. The first uses the high bandwidth memory (mc-

dram) of knls as a cache (CM), while the second runs in flat memory mode using only ddr.

mkl sparse spmm in mkl’s inspector-executor is referred to as mkl-ins, and the mkl dcsrmultcsr

is referred to as mkl7 and mkl8. mkl dcsrmultcsr requires sorted inputs, without necessarily re-

turning sorted outputs. Output sorting may be skipped for A × A (e.g., graph analytic problems);430

however, it becomes an issue for multigrid. The results report both mkl7 (without output sorting)

and mkl8 (with output sorting). mkl’s expected performance is the performance of mkl7 for A×A
and mkl8 for multigrid multiplications.

Figure 7 shows strong scaling GFLOPS/sec of six methods on three multiplications for CM and

ddr with number of threads. Since we use maximally 64 cores, 128 and 256 threads use 2 or 4435

hyperthreads per cores respectively. Memory accesses on ddr are relatively more expensive than

CM; therefore methods using sparse accumulators tend to achieve better scaling and performance.

kkdense is usually outperformed by kkmem on ddr except on coPapersCiteseer. CM provides more

bandwidth which boosts the performance of all methods. When the bandwidth is not saturated,
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Figure 6: Performance profiles on Power8, knl, and P100 gpus. Experiments on gpus include 81
multiplications, as result C does not fit into memory.18
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Figure 7: Strong scaling GLOPS/sec on knls. Top and bottom figures are for flat ddr and CM,
respectively. mkl8 does not complete in the given allocation time for coPapersCiteseer.
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methods have similar performances on ddr and mcdram, which is observed up to 32 threads.440

CM improves the performance of methods which stress memory accesses more, e.g. kkdense. In

general, methods favoring memory accesses over hash computations are more likely to benefit from

CM than those that already have localized memory accesses. kkspgemm mostly achieves the best

performance except for coPapersCiteseer. The higher memory bandwidth of CM allows the use of

dense accumulators for larger k. k is still too large to benefit from CM for R × A. mkl methods445

achieve better performance on lower thread counts, but they do not scale with hyperthreads. mkl-

ins has the best performance among mkl methods.

It is worthwhile to note that these thread scaling experiments conflate two performance critical

issues: thread-scalability of an algorithm, and the amount of memory bandwidth and load/store

slots available to each thread. The latter issue would still afflict performance if these methods are450

used as part of an MPI application, where for example 8 MPI ranks each use 32 threads on KNL.

In such a usecase we would expect the relative performance of the methods to be closer to the 256

thread case than the 32 thread case in our experiments.

Figure 6 shows performance profiles for NoReuse for ddr, and both NoReuse and Reuse for

CM. The experiments on ddr demonstrate the strength of a thread-scalable kkmem algorithm.455

It outperforms kkdense for larger datasets. Overall, kkspgemm obtains the best performance,

taking advantage of kkmem and kkdense for large and small datasets, respectively. kkdense

significantly improves its performance on CM w.r.t. ddr. Among mkl methods, mkl-ins achieves

the best performance. However, it is a 1-phase method. It cannot exploit structural reuse, and its

performance drops for the Reuse case.460

4.3 Experiments on GPUs

We evaluate the performance of our methods against Nsparse, cuSPARSE and ViennaCL (1.7.1)

on P100 gpus. Figure 6e shows the performance profile on P100 GPUs for NoReuse. Among these

methods, kkspgemm and cuSPARSE run for all 81 instances. kkmem, Nsparse and viennaCL fail

for 2, 4 and 9 matrices. cuSPARSE and viennaCL are mostly outperformed by the other methods.465

These are followed by our previous method kkmem, and our LP based method kklp. kkspgemm

takes advantage of kklp, and significantly improves our previous method kkmem with a better

parameter setting. As a result, kkspgemm and Nsparse are the most competitive methods. Nsparse,

taking advantage of cuda-streams, achieves slightly better performance than kkspgemm. Although

the lack of cuda-streams is a limitation for kkspgemm, with a better selection of the parameters it470

obtains the best performance for 28 test problems.

Most of the significant performance differences between Nsparse and kkspgemm occur for smaller

multiplications that take between 1 to 10 milliseconds. Nsparse has the best performance on 18 out

of 20 multiplications with the smallest number of total fm. As the multiplications get larger, the

performance of kkspgemm is on average 3 − 4% better than Nsparse (excluding the smallest 20475

test problems). kkspgemm is also able to perform 4 test multiplications for which Nsparse runs
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Figure 8: Speedup of kkspgemm w.r.t. NSparse for matrices that are grouped w.r.t. fm. These
groups can be found using indices in Table 3.

out of memory (kron16, coPaparciteseer, flickr, coPapersDBLP). The performance comparison of

kkspgemm against Nsparse for multiplications sorted based on fm required is shown in Figure 8.

This figure reports the geometric mean of the kkspgemm speedups w.r.t. Nsparse. For the smallest

10 and 20 multiplications, Nsparse is about 47% and 17% faster than kkspgemm. kkspgemm, on480

average, has more consistent and faster runtimes for the larger inputs. kkspgemm is designed for

scalability, and it introduces various overheads to achieve this scalability (e.g., compression). When

the inputs are small, the overhead introduced is not amortized, as the multiplication time is very

small even without compression. This makes kkspgemm slower on small matrices, but at the same

time it makes kkspgemm more robust and scalable allowing it to run much larger problems. On the485

other hand, Nsparse returns sorted output rows, which is not the case for kkspgemm. The choice

of the better method depends on the application area. If the application requires sorted outputs or

the problem size is small, Nsparse is likely to achieve better performance. For the problems with

large memory requirements, kkspgemm is the better choice. Lastly, Figure 6f gives the performance

profile for the Reuse case. Although Nsparse also runs in two-phases, its current user interface does490

not allow reuse of the symbolic computations.

The effect of the compression: Compression is critical to reduce the time and the memory

requirements of the symbolic phase. It helps to reduce both the number of hash insertions as

well as the estimated max row size. Table-1 and 2 (supplementary materials) lists the original fm

and maxrf. CF and CMRF give the reduction ratios with compression on fm and maxrf (e.g.,495

0.85 means 15% reduction), respectively. On average, fm and maxrf are reduced by 62% and 70%.

Compression reduces the memory requirements (maxrf) in most cases up to 97%. It usually reduces

the runtime of the symbolic phase. When the reduction on fm is low (e.g., CF > 0.85), it might not

amortize compression cost. We skip the second-phase of the compression in such cases; however, we

still introduce overheads for CF calculations. CF is greater than 0.85 for only 7 multiplications, for500

which the symbolic phase is run without compressed values.
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5 Conclusion

We described thread-scalable spgemm kernels for highly threaded architectures. Using the porta-

bility provided by Kokkos, we describe algorithms that are portable to gpus and cpus. The per-

formance of the methods is demonstrated on Power8 cpus, knls, and P100 gpus, in which our505

implementations achieve at least as good performance as the native methods. On cpus and knls,

we show that sparse accumulators are preferrable when memory accesses are the performance bot-

tleneck. As memory systems provide more bandwidth (as in mcdram) and k is small, methods

with dense accumulators outperform those with sparse accumulators. Although our methods can-

not exploit some of the architecture specific details of gpus, e.g., cuda-streams, because of current510

Kokkos limitations, with a better way of parameter selection we achieve as good performance as

highly optimized libraries. The experiments also show that our methods using memory pool and

compression techniques are robust and can perform multiplications with high memory demands.

Our experiments also highlight the importance of designing methods for application use cases such

as symbolic “reuse” with significantly better performance than past methods.515
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